The magmaOffenburg 2012 RoboCup 3D
Simulation Team

Klaus Dorer, Stefan Glaser!

Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany

Abstract. This paper describes the magmaOffenburg 3D simulation
team trying to qualify for RoboCup 2012. While last year’s TDP fo-
cused on the tool set created for 3D simulation and the support for
heterogeneous robot models, this year we focus on the different ways
how robot behavior can be defined in the magmaOffenburg framework
and how those behaviors can be improved by learning.

1 Introduction

This year our focus is on how robot behavior can be defined in the magmaOf-
fenburg framework and how those behaviors can be improved by learning. Two
recent bachelor thesis together with the ongoing efforts of the team have ex-
tended the possibilities considerably. The possibilities include hard coded robot
movements (section 2.1), behaviors defined by functions like splines or sins (sec-
tion 2.2), behaviors defined using functions for body part positions using in-
verse kinematics to reach them (section 2.3), behaviors created from translating
motion captured files (section 2.4) and behaviors life recorded using a Kinect
(section 2.5)).

2 Robot Behavior

One of the most difficult tasks in soccer simulation 3D league is the proper
choreography of moving 22 joints in a way that a desired behavior of the robot
is achieved. In an effort to simplify the creation of new behaviors, a couple of
methods and frameworks have been evolved in the magmaOffenburg framework.

2.1 Movement Framework

The most basic, but nevertheless useful method to create robot behaviors in the
magmaOffenburg framework is provided by the so called movement framework.
The model is shown in Figure 1.

Each movement is subdivided into movement phases which are composed
of single joint movements. Special features include an automatic conversion of
right body parts movements into their symmetric left body part movement. Also
movements allow to define speeds for each joint so that a joint not necessarily

Movement MovementPhase MovementSingle
-name : String ‘T-cyw:lﬁ sint ‘T-joinﬂ\lame : String
-currentPhaselndex : int -cyclesPerformed : int -jointAngle : float
+perform() -skipWhenFinished : boolean -speed : float
+getLeftVersion() : Movement +perform() +move()

Fig. 1. Model of the movement framework.

has to move until the end of a movement phase. Behaviors based on movements
can be closed loop by defining conditions at any phase of the movement allowing
to prolong or skip movement phases or changing single movements completely.
Example behaviors using the movement framework are getting up and kicking,
both above average in the league. The movements are specified as hard coded
java code (Fig. 2) though it would be simple to read the corresponding values
from xml files or similar.

keep = new Movement ("keepRight"):;

keep.add (new MovementPhase ("phasel™, 200) //
.add (INaoConstants.LShoulderPitch, 90, 7f£) //
.add (INaoConstants.LShoulderYaw, 0, TL) //
.add (INaoConstants.LArmYaw, 0, 7£) //
.add (INacConstants.LArmEoll, 0, 7£) //

Fig. 2. Example implementation (part) of a movement.

2.2 Function Behaviors

Static behaviors can be defined using functions that model the joint angle over
time. In order to simplify the definition of such functions, a function editor has
been created. It supports piecewise linear functions, sinus functions and splines
(see Figure 3). Support points can be moved in any direction between its neighbor
support points. Whole movement phases can be selected and shifted, stretched
or removed. The behavior can be tested in real speed from within the tool. And
finally a cursor can be moved at any speed and direction to test each part of the
behavior or to move support points while the robot is following the movement.
The result is stored in a behavior file and can be used by the robots.

2.3 Inverse Kinematics Control

In contrast to static or semi-static robotic movement definitions, modelling dy-
namic movements involving further sensor information is essential in reaching

(o Sliders —© o —— | o

File

shootLeftKlaus ‘v X46Y:72 none ‘v

Duplicate Select All

Perform Deselect All

[] Show actual

Start

Stop

Select All

Deselect All

|| 4] LFootPitch
LFootRoll

LHipPitch

|) LHipRol
LHipYawPitch
LKneePitch
RFootPitch

| 4 RFootRol
RHipPitch

| RHipRoll
RHipYawPitch
RKneePitch

Fig. 3. Function Behavior Editor.

human like movement skills. These, usually already complex behaviors get fur-
ther blown up by calculations regarding direct joint control. Furthermore, with
the introduction of heterogeneous robot models, all behaviors controlling joints
directly are most likely to fail when porting them on a new robot model and
have to be rewritten or modified.

Since the magmaOffenburg framework already provides a dynamic robot
model, described by the last TDP, using this model for inverse kinematics cal-
culations was the natural consequence. For this purpose each body part dy-
namically provides a method to create the Jacobian matrix along the chain
of body parts to the root body part. A body part instance provides anything
needed to perform the typical basic cycle of inverse kinematics methods between
requesting the Jacobian matrix and performing delta movements on the corre-
sponding joints. This way different inverse kinematics methods can be used to
optimize the position/orientation of a specific body part, of a body model in-
stance representing an arbitrary (hierarchical) physical robot model, towards a
target position/orientation in space. Current effort is spent on investigating dif-
ferent inverse kinematics methods and their applicability in the humanoid robot
domain.

Defining inverse kinematic controlled behaviors can be done similar to most
other methods described in this TDP by simply replacing the term “target angles
to joints” with “target position/orientation to body parts”. However, the real
power behind inverse kinematics lies in the abstraction of the physical properties
of the robot. With this framework, behaviors can calculate target positions and
orientations dynamically using further sensor information and simply hand this
information to the inverse kinematics framework to move the robot appropri-
ately. Behavior creation in general is much easier and with a scalable design it

should also be portable to other robot models. First results show that move-
ments calculated by inverse kinematics are well competitive to their equivalents
using direct joint control, but the portability of such behaviors to other robot
models is not yet verified.

2.4 Motion Capturing

As a first step towards human like behavior, Matthias Kurth [2] has created a
converter that is able to convert motion capturing files in Acclaim ASF/AMC
format to movement files of a Nao robot. A core component of this work is the
mapping logic between the different skeletons defined Acclaim and the Nao robot
(see Figure 4).

Legende

— Kopbereich (1)

w— fqmbereich rechts (2.1)
Armbereich links 2.2)

- Zentrum (3)

m— Beirbereich rechis (5.1)

m== Beirbereich links (4.2)

Fig. 4. Acclaim ASF/AMC and Nao skeleton.

2.5 Kinect Control

The next step towards human controlled behavior has been done by Bjorn Ritter
[1] who has created a framework that allows life control of a simulated Nao robot
through a Kinect device. Motions are captured by the Kinect and transformed

into a Nao skeleton in a piece of code written in C#. Since the magmaOffenburg
framework is written in Java, the access to the data is done through a JNI Bridge
(see Figure 5).

Microsoft Kinect >
SDK -

magmaOffenburg

Fig. 5. Architecture for human to Nao robot control through a Kinect.

A snapshot of the result can be seen in Figure 6. Motions of interacting
humans are translated life to motions of the simulated Nao robot.

Fig. 6. Example of a motion created life by interaction with a Kinect. Left the human
motion, middle Nao robot using forward kinematics, right Nao robot using inverse
kinematics.

Current limitations include that leg movements almost always result in the
robot falling down. Also the Kinect is not able to detect foot angles or arm
rotations. To achieve some smoothness in motions, Kinect percepts have to be
filtered to some degree, causing roughly 0.5 s latency (including the latency of
the Kinect itself).

3 Behavior Optimization

Walking of our robots is based on the work of [8] and described in [3]. In this
approach, successful walking depends on roughly 15 parameters that have to be
fine tuned to fit to the robot model. Two methods proved to be useful to explore
valuable parameter sets: genetic algorithms and tabu search. While the genetic
algorithms proved to be more successful in exploring initial valuable areas of the
search space, tabu search was used to fine tune parameter sets found by genetic
algorithms. For both approaches the ’as fast as possible’ server mode was used
to run simulation about eight times faster than real time. Optimization has been
spread on a cluster of six computers.

3.1 Genetic Optimization

Classic genetic optimization was used to find promising areas in the search space.
The population typically consisted of 20 individuums, selection was done using
Monte-Carlo selection, reproduction was done using multi-crossover and no mu-
tation was used. The fitness function included the distance reached (most im-
portant), the deviation from desired angle and from walking straight. Training
was immediately interrupted if the robot fell down or turned more than 45 de-
grees from walking straight. The utility was averaged over five runs that started
with a standing robot and ended after 500 cycles at most. The results of such a
run can be seen in Figure 7. The trend of the fitness of all individuums shows
an improvement of roughly 40% after running fitness measurements for roughly
2000 robots, i.e. 100 generations.

Fig. 7. Improvement of individuums over time using genetic optimization.

3.2 Tabu Search

Since calculation of fitness is quite expensive in this domain taking several sec-
onds for each individuum, final fine tuning of parameters in interesting areas
of the search space was performed by tabu search. The neighborhood has been
defined to consist of 10% variation steps for each parameter. Because utilities are

quite similar for those small kinds of changes, 20 runs have been performed for
each position in the neighborhood to average out fluctuations. The small size of
the chromosoms allowed for tabu list sizes that rendered cycles in search space
impossible. Roughly another 10% improvement with respect to fitness values of
the best individuums could be achieved.

4 Team

The magmaOffenburg team:

— Klaus Dorer (Team leader)
Stefan Glaser

— Fabian Korak

Maximilian Krog

Ingo Schindler

References

1. Ritter, B.: Steuerung simulierter Roboter mit Kinect. Bachelor thesis, Hochschule
Offenburg, Germany (2012)

2. Kurth, M.: Steuerung eines simulierten Roboters mit Hilfe von Motion Capturing
Files. Bachelor thesis, Hochschule Offenburg, Germany (2011)

3. Schindler, I.: Laufen auf zwei Beinen in der simulierten RoboCup 3D-Umgebung.
Bachelor thesis, Hochschule Offenburg, Germany (2009)

4. Dorer, K.: Modeling Human Decision Making using Extended Behavior Networks.
J Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 81-91. Springer, Heidelberg
(2010)

5. Dorer, K.: Extended Behavior Networks for Behavior Selection in Dynamic and
Continuous Domains. In: U. Visser, et al. (Eds.) Proceedings of the ECAI workshop
Agents in dynamic domains, Valencia, Spain (2004)

6. Dorer, K.: Motivation, Handlungskontrolle und Zielmanagement in autonomen
Agenten. PhD thesis, Albert-Ludwigs University (2000)

7. Dorer, K.: Behavior Networks for Continuous Domains using Situation—-Dependent
Motivations. Proceedings of the Sixteenth International Conference of Artificial In-
telligence (1999) 1233-1238

8. Huang Qiang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hi- rohiko Arai, Noriho
Koyachi und Kazuo Tanie: Planning Walking Patterns for a Biped Robot. IEEE
Tranactions on Robotics and Automation, 17:280-289, 2001.

9. Maes, P.: The Dynamics of Action Selection. Proceedings of the International Joint
Conference on Artificial Intelligence (1989) 991-997

10. Veenstra, A., Neijt, B., Vermeulen, F., Veenstra, G., Prins, J., Kuypers, J., Stol-
lenga, M., vd Sanden, M., Klomp, M., Platje, M., van Dijk, S. The Little Green
Bats at http://www.littlegreenbats.nl/ (2008)

